1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: NEP routines related to options that can be set via the command-line
12: or procedurally
13: */
15: #include <slepc/private/nepimpl.h> 16: #include <petscdraw.h>
18: /*@C
19: NEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20: indicated by the user.
22: Collective on nep
24: Input Parameters:
25: + nep - the nonlinear eigensolver context
26: . opt - the command line option for this monitor
27: . name - the monitor type one is seeking
28: . ctx - an optional user context for the monitor, or NULL
29: - trackall - whether this monitor tracks all eigenvalues or not
31: Level: developer
33: .seealso: NEPMonitorSet(), NEPSetTrackAll()
34: @*/
35: PetscErrorCode NEPMonitorSetFromOptions(NEP nep,const char opt[],const char name[],void *ctx,PetscBool trackall) 36: {
37: PetscErrorCode (*mfunc)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
38: PetscErrorCode (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
39: PetscErrorCode (*dfunc)(PetscViewerAndFormat**);
40: PetscViewerAndFormat *vf;
41: PetscViewer viewer;
42: PetscViewerFormat format;
43: PetscViewerType vtype;
44: char key[PETSC_MAX_PATH_LEN];
45: PetscBool flg;
46: PetscErrorCode ierr;
49: PetscOptionsGetViewer(PetscObjectComm((PetscObject)nep),((PetscObject)nep)->options,((PetscObject)nep)->prefix,opt,&viewer,&format,&flg);
50: if (!flg) return(0);
52: PetscViewerGetType(viewer,&vtype);
53: SlepcMonitorMakeKey_Internal(name,vtype,format,key);
54: PetscFunctionListFind(NEPMonitorList,key,&mfunc);
55: PetscFunctionListFind(NEPMonitorCreateList,key,&cfunc);
56: PetscFunctionListFind(NEPMonitorDestroyList,key,&dfunc);
57: if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
58: if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
60: (*cfunc)(viewer,format,ctx,&vf);
61: PetscObjectDereference((PetscObject)viewer);
62: NEPMonitorSet(nep,mfunc,vf,(PetscErrorCode(*)(void **))dfunc);
63: if (trackall) {
64: NEPSetTrackAll(nep,PETSC_TRUE);
65: }
66: return(0);
67: }
69: /*@
70: NEPSetFromOptions - Sets NEP options from the options database.
71: This routine must be called before NEPSetUp() if the user is to be
72: allowed to set the solver type.
74: Collective on nep
76: Input Parameters:
77: . nep - the nonlinear eigensolver context
79: Notes:
80: To see all options, run your program with the -help option.
82: Level: beginner
83: @*/
84: PetscErrorCode NEPSetFromOptions(NEP nep) 85: {
86: PetscErrorCode ierr;
87: char type[256];
88: PetscBool set,flg,flg1,flg2,flg3,flg4,flg5,bval;
89: PetscReal r;
90: PetscScalar s;
91: PetscInt i,j,k;
92: NEPRefine refine;
93: NEPRefineScheme scheme;
97: NEPRegisterAll();
98: PetscObjectOptionsBegin((PetscObject)nep);
99: PetscOptionsFList("-nep_type","Nonlinear eigensolver method","NEPSetType",NEPList,(char*)(((PetscObject)nep)->type_name?((PetscObject)nep)->type_name:NEPRII),type,sizeof(type),&flg);
100: if (flg) {
101: NEPSetType(nep,type);
102: } else if (!((PetscObject)nep)->type_name) {
103: NEPSetType(nep,NEPRII);
104: }
106: PetscOptionsBoolGroupBegin("-nep_general","General nonlinear eigenvalue problem","NEPSetProblemType",&flg);
107: if (flg) { NEPSetProblemType(nep,NEP_GENERAL); }
108: PetscOptionsBoolGroupEnd("-nep_rational","Rational eigenvalue problem","NEPSetProblemType",&flg);
109: if (flg) { NEPSetProblemType(nep,NEP_RATIONAL); }
111: refine = nep->refine;
112: PetscOptionsEnum("-nep_refine","Iterative refinement method","NEPSetRefine",NEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1);
113: i = nep->npart;
114: PetscOptionsInt("-nep_refine_partitions","Number of partitions of the communicator for iterative refinement","NEPSetRefine",nep->npart,&i,&flg2);
115: r = nep->rtol;
116: PetscOptionsReal("-nep_refine_tol","Tolerance for iterative refinement","NEPSetRefine",nep->rtol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL/1000:nep->rtol,&r,&flg3);
117: j = nep->rits;
118: PetscOptionsInt("-nep_refine_its","Maximum number of iterations for iterative refinement","NEPSetRefine",nep->rits,&j,&flg4);
119: scheme = nep->scheme;
120: PetscOptionsEnum("-nep_refine_scheme","Scheme used for linear systems within iterative refinement","NEPSetRefine",NEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5);
121: if (flg1 || flg2 || flg3 || flg4 || flg5) { NEPSetRefine(nep,refine,i,r,j,scheme); }
123: i = nep->max_it;
124: PetscOptionsInt("-nep_max_it","Maximum number of iterations","NEPSetTolerances",nep->max_it,&i,&flg1);
125: r = nep->tol;
126: PetscOptionsReal("-nep_tol","Tolerance","NEPSetTolerances",nep->tol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL:nep->tol,&r,&flg2);
127: if (flg1 || flg2) { NEPSetTolerances(nep,r,i); }
129: PetscOptionsBoolGroupBegin("-nep_conv_rel","Relative error convergence test","NEPSetConvergenceTest",&flg);
130: if (flg) { NEPSetConvergenceTest(nep,NEP_CONV_REL); }
131: PetscOptionsBoolGroup("-nep_conv_norm","Convergence test relative to the matrix norms","NEPSetConvergenceTest",&flg);
132: if (flg) { NEPSetConvergenceTest(nep,NEP_CONV_NORM); }
133: PetscOptionsBoolGroup("-nep_conv_abs","Absolute error convergence test","NEPSetConvergenceTest",&flg);
134: if (flg) { NEPSetConvergenceTest(nep,NEP_CONV_ABS); }
135: PetscOptionsBoolGroupEnd("-nep_conv_user","User-defined convergence test","NEPSetConvergenceTest",&flg);
136: if (flg) { NEPSetConvergenceTest(nep,NEP_CONV_USER); }
138: PetscOptionsBoolGroupBegin("-nep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","NEPSetStoppingTest",&flg);
139: if (flg) { NEPSetStoppingTest(nep,NEP_STOP_BASIC); }
140: PetscOptionsBoolGroupEnd("-nep_stop_user","User-defined stopping test","NEPSetStoppingTest",&flg);
141: if (flg) { NEPSetStoppingTest(nep,NEP_STOP_USER); }
143: i = nep->nev;
144: PetscOptionsInt("-nep_nev","Number of eigenvalues to compute","NEPSetDimensions",nep->nev,&i,&flg1);
145: j = nep->ncv;
146: PetscOptionsInt("-nep_ncv","Number of basis vectors","NEPSetDimensions",nep->ncv,&j,&flg2);
147: k = nep->mpd;
148: PetscOptionsInt("-nep_mpd","Maximum dimension of projected problem","NEPSetDimensions",nep->mpd,&k,&flg3);
149: if (flg1 || flg2 || flg3) {
150: NEPSetDimensions(nep,i,j,k);
151: }
153: PetscOptionsBoolGroupBegin("-nep_largest_magnitude","Compute largest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg);
154: if (flg) { NEPSetWhichEigenpairs(nep,NEP_LARGEST_MAGNITUDE); }
155: PetscOptionsBoolGroup("-nep_smallest_magnitude","Compute smallest eigenvalues in magnitude","NEPSetWhichEigenpairs",&flg);
156: if (flg) { NEPSetWhichEigenpairs(nep,NEP_SMALLEST_MAGNITUDE); }
157: PetscOptionsBoolGroup("-nep_largest_real","Compute eigenvalues with largest real parts","NEPSetWhichEigenpairs",&flg);
158: if (flg) { NEPSetWhichEigenpairs(nep,NEP_LARGEST_REAL); }
159: PetscOptionsBoolGroup("-nep_smallest_real","Compute eigenvalues with smallest real parts","NEPSetWhichEigenpairs",&flg);
160: if (flg) { NEPSetWhichEigenpairs(nep,NEP_SMALLEST_REAL); }
161: PetscOptionsBoolGroup("-nep_largest_imaginary","Compute eigenvalues with largest imaginary parts","NEPSetWhichEigenpairs",&flg);
162: if (flg) { NEPSetWhichEigenpairs(nep,NEP_LARGEST_IMAGINARY); }
163: PetscOptionsBoolGroup("-nep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","NEPSetWhichEigenpairs",&flg);
164: if (flg) { NEPSetWhichEigenpairs(nep,NEP_SMALLEST_IMAGINARY); }
165: PetscOptionsBoolGroup("-nep_target_magnitude","Compute eigenvalues closest to target","NEPSetWhichEigenpairs",&flg);
166: if (flg) { NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE); }
167: PetscOptionsBoolGroup("-nep_target_real","Compute eigenvalues with real parts closest to target","NEPSetWhichEigenpairs",&flg);
168: if (flg) { NEPSetWhichEigenpairs(nep,NEP_TARGET_REAL); }
169: PetscOptionsBoolGroup("-nep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","NEPSetWhichEigenpairs",&flg);
170: if (flg) { NEPSetWhichEigenpairs(nep,NEP_TARGET_IMAGINARY); }
171: PetscOptionsBoolGroupEnd("-nep_all","Compute all eigenvalues in a region","NEPSetWhichEigenpairs",&flg);
172: if (flg) { NEPSetWhichEigenpairs(nep,NEP_ALL); }
174: PetscOptionsScalar("-nep_target","Value of the target","NEPSetTarget",nep->target,&s,&flg);
175: if (flg) {
176: if (nep->which!=NEP_TARGET_REAL && nep->which!=NEP_TARGET_IMAGINARY) {
177: NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE);
178: }
179: NEPSetTarget(nep,s);
180: }
182: PetscOptionsBool("-nep_two_sided","Use two-sided variant (to compute left eigenvectors)","NEPSetTwoSided",nep->twosided,&bval,&flg);
183: if (flg) { NEPSetTwoSided(nep,bval); }
185: /* -----------------------------------------------------------------------*/
186: /*
187: Cancels all monitors hardwired into code before call to NEPSetFromOptions()
188: */
189: PetscOptionsBool("-nep_monitor_cancel","Remove any hardwired monitor routines","NEPMonitorCancel",PETSC_FALSE,&flg,&set);
190: if (set && flg) { NEPMonitorCancel(nep); }
191: NEPMonitorSetFromOptions(nep,"-nep_monitor","first_approximation",NULL,PETSC_FALSE);
192: NEPMonitorSetFromOptions(nep,"-nep_monitor_all","all_approximations",NULL,PETSC_TRUE);
193: NEPMonitorSetFromOptions(nep,"-nep_monitor_conv","convergence_history",NULL,PETSC_FALSE);
195: /* -----------------------------------------------------------------------*/
196: PetscOptionsName("-nep_view","Print detailed information on solver used","NEPView",NULL);
197: PetscOptionsName("-nep_view_vectors","View computed eigenvectors","NEPVectorsView",NULL);
198: PetscOptionsName("-nep_view_values","View computed eigenvalues","NEPValuesView",NULL);
199: PetscOptionsName("-nep_converged_reason","Print reason for convergence, and number of iterations","NEPConvergedReasonView",NULL);
200: PetscOptionsName("-nep_error_absolute","Print absolute errors of each eigenpair","NEPErrorView",NULL);
201: PetscOptionsName("-nep_error_relative","Print relative errors of each eigenpair","NEPErrorView",NULL);
203: if (nep->ops->setfromoptions) {
204: (*nep->ops->setfromoptions)(PetscOptionsObject,nep);
205: }
206: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)nep);
207: PetscOptionsEnd();
209: if (!nep->V) { NEPGetBV(nep,&nep->V); }
210: BVSetFromOptions(nep->V);
211: if (!nep->rg) { NEPGetRG(nep,&nep->rg); }
212: RGSetFromOptions(nep->rg);
213: if (nep->useds) {
214: if (!nep->ds) { NEPGetDS(nep,&nep->ds); }
215: DSSetFromOptions(nep->ds);
216: }
217: if (!nep->refineksp) { NEPRefineGetKSP(nep,&nep->refineksp); }
218: KSPSetFromOptions(nep->refineksp);
219: if (nep->fui==NEP_USER_INTERFACE_SPLIT) for (i=0;i<nep->nt;i++) {FNSetFromOptions(nep->f[i]);}
220: return(0);
221: }
223: /*@C
224: NEPGetTolerances - Gets the tolerance and maximum iteration count used
225: by the NEP convergence tests.
227: Not Collective
229: Input Parameter:
230: . nep - the nonlinear eigensolver context
232: Output Parameters:
233: + tol - the convergence tolerance
234: - maxits - maximum number of iterations
236: Notes:
237: The user can specify NULL for any parameter that is not needed.
239: Level: intermediate
241: .seealso: NEPSetTolerances()
242: @*/
243: PetscErrorCode NEPGetTolerances(NEP nep,PetscReal *tol,PetscInt *maxits)244: {
247: if (tol) *tol = nep->tol;
248: if (maxits) *maxits = nep->max_it;
249: return(0);
250: }
252: /*@
253: NEPSetTolerances - Sets the tolerance and maximum iteration count used
254: by the NEP convergence tests.
256: Logically Collective on nep
258: Input Parameters:
259: + nep - the nonlinear eigensolver context
260: . tol - the convergence tolerance
261: - maxits - maximum number of iterations to use
263: Options Database Keys:
264: + -nep_tol <tol> - Sets the convergence tolerance
265: - -nep_max_it <maxits> - Sets the maximum number of iterations allowed
267: Notes:
268: Use PETSC_DEFAULT for either argument to assign a reasonably good value.
270: Level: intermediate
272: .seealso: NEPGetTolerances()
273: @*/
274: PetscErrorCode NEPSetTolerances(NEP nep,PetscReal tol,PetscInt maxits)275: {
280: if (tol == PETSC_DEFAULT) {
281: nep->tol = PETSC_DEFAULT;
282: nep->state = NEP_STATE_INITIAL;
283: } else {
284: if (tol <= 0.0) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
285: nep->tol = tol;
286: }
287: if (maxits == PETSC_DEFAULT || maxits == PETSC_DECIDE) {
288: nep->max_it = PETSC_DEFAULT;
289: nep->state = NEP_STATE_INITIAL;
290: } else {
291: if (maxits <= 0) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
292: nep->max_it = maxits;
293: }
294: return(0);
295: }
297: /*@C
298: NEPGetDimensions - Gets the number of eigenvalues to compute
299: and the dimension of the subspace.
301: Not Collective
303: Input Parameter:
304: . nep - the nonlinear eigensolver context
306: Output Parameters:
307: + nev - number of eigenvalues to compute
308: . ncv - the maximum dimension of the subspace to be used by the solver
309: - mpd - the maximum dimension allowed for the projected problem
311: Notes:
312: The user can specify NULL for any parameter that is not needed.
314: Level: intermediate
316: .seealso: NEPSetDimensions()
317: @*/
318: PetscErrorCode NEPGetDimensions(NEP nep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)319: {
322: if (nev) *nev = nep->nev;
323: if (ncv) *ncv = nep->ncv;
324: if (mpd) *mpd = nep->mpd;
325: return(0);
326: }
328: /*@
329: NEPSetDimensions - Sets the number of eigenvalues to compute
330: and the dimension of the subspace.
332: Logically Collective on nep
334: Input Parameters:
335: + nep - the nonlinear eigensolver context
336: . nev - number of eigenvalues to compute
337: . ncv - the maximum dimension of the subspace to be used by the solver
338: - mpd - the maximum dimension allowed for the projected problem
340: Options Database Keys:
341: + -nep_nev <nev> - Sets the number of eigenvalues
342: . -nep_ncv <ncv> - Sets the dimension of the subspace
343: - -nep_mpd <mpd> - Sets the maximum projected dimension
345: Notes:
346: Use PETSC_DEFAULT for ncv and mpd to assign a reasonably good value, which is
347: dependent on the solution method.
349: The parameters ncv and mpd are intimately related, so that the user is advised
350: to set one of them at most. Normal usage is that
351: (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
352: (b) in cases where nev is large, the user sets mpd.
354: The value of ncv should always be between nev and (nev+mpd), typically
355: ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
356: a smaller value should be used.
358: Level: intermediate
360: .seealso: NEPGetDimensions()
361: @*/
362: PetscErrorCode NEPSetDimensions(NEP nep,PetscInt nev,PetscInt ncv,PetscInt mpd)363: {
369: if (nev<1) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
370: nep->nev = nev;
371: if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
372: nep->ncv = PETSC_DEFAULT;
373: } else {
374: if (ncv<1) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
375: nep->ncv = ncv;
376: }
377: if (mpd == PETSC_DECIDE || mpd == PETSC_DEFAULT) {
378: nep->mpd = PETSC_DEFAULT;
379: } else {
380: if (mpd<1) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
381: nep->mpd = mpd;
382: }
383: nep->state = NEP_STATE_INITIAL;
384: return(0);
385: }
387: /*@
388: NEPSetWhichEigenpairs - Specifies which portion of the spectrum is
389: to be sought.
391: Logically Collective on nep
393: Input Parameters:
394: + nep - eigensolver context obtained from NEPCreate()
395: - which - the portion of the spectrum to be sought
397: Possible values:
398: The parameter 'which' can have one of these values
400: + NEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
401: . NEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
402: . NEP_LARGEST_REAL - largest real parts
403: . NEP_SMALLEST_REAL - smallest real parts
404: . NEP_LARGEST_IMAGINARY - largest imaginary parts
405: . NEP_SMALLEST_IMAGINARY - smallest imaginary parts
406: . NEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
407: . NEP_TARGET_REAL - eigenvalues with real part closest to target
408: . NEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
409: . NEP_ALL - all eigenvalues contained in a given region
410: - NEP_WHICH_USER - user defined ordering set with NEPSetEigenvalueComparison()
412: Options Database Keys:
413: + -nep_largest_magnitude - Sets largest eigenvalues in magnitude
414: . -nep_smallest_magnitude - Sets smallest eigenvalues in magnitude
415: . -nep_largest_real - Sets largest real parts
416: . -nep_smallest_real - Sets smallest real parts
417: . -nep_largest_imaginary - Sets largest imaginary parts
418: . -nep_smallest_imaginary - Sets smallest imaginary parts
419: . -nep_target_magnitude - Sets eigenvalues closest to target
420: . -nep_target_real - Sets real parts closest to target
421: . -nep_target_imaginary - Sets imaginary parts closest to target
422: - -nep_all - Sets all eigenvalues in a region
424: Notes:
425: Not all eigensolvers implemented in NEP account for all the possible values
426: stated above. If SLEPc is compiled for real numbers NEP_LARGEST_IMAGINARY427: and NEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
428: for eigenvalue selection.
430: The target is a scalar value provided with NEPSetTarget().
432: Level: intermediate
434: .seealso: NEPGetWhichEigenpairs(), NEPSetTarget(), NEPSetEigenvalueComparison(), NEPWhich435: @*/
436: PetscErrorCode NEPSetWhichEigenpairs(NEP nep,NEPWhich which)437: {
441: switch (which) {
442: case NEP_LARGEST_MAGNITUDE:
443: case NEP_SMALLEST_MAGNITUDE:
444: case NEP_LARGEST_REAL:
445: case NEP_SMALLEST_REAL:
446: case NEP_LARGEST_IMAGINARY:
447: case NEP_SMALLEST_IMAGINARY:
448: case NEP_TARGET_MAGNITUDE:
449: case NEP_TARGET_REAL:
450: #if defined(PETSC_USE_COMPLEX)
451: case NEP_TARGET_IMAGINARY:
452: #endif
453: case NEP_ALL:
454: case NEP_WHICH_USER:
455: if (nep->which != which) {
456: nep->state = NEP_STATE_INITIAL;
457: nep->which = which;
458: }
459: break;
460: #if !defined(PETSC_USE_COMPLEX)
461: case NEP_TARGET_IMAGINARY:
462: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_SUP,"NEP_TARGET_IMAGINARY can be used only with complex scalars");
463: #endif
464: default:465: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
466: }
467: return(0);
468: }
470: /*@
471: NEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
472: sought.
474: Not Collective
476: Input Parameter:
477: . nep - eigensolver context obtained from NEPCreate()
479: Output Parameter:
480: . which - the portion of the spectrum to be sought
482: Notes:
483: See NEPSetWhichEigenpairs() for possible values of 'which'.
485: Level: intermediate
487: .seealso: NEPSetWhichEigenpairs(), NEPWhich488: @*/
489: PetscErrorCode NEPGetWhichEigenpairs(NEP nep,NEPWhich *which)490: {
494: *which = nep->which;
495: return(0);
496: }
498: /*@C
499: NEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
500: when NEPSetWhichEigenpairs() is set to NEP_WHICH_USER.
502: Logically Collective on nep
504: Input Parameters:
505: + nep - eigensolver context obtained from NEPCreate()
506: . func - a pointer to the comparison function
507: - ctx - a context pointer (the last parameter to the comparison function)
509: Calling Sequence of func:
510: $ func(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
512: + ar - real part of the 1st eigenvalue
513: . ai - imaginary part of the 1st eigenvalue
514: . br - real part of the 2nd eigenvalue
515: . bi - imaginary part of the 2nd eigenvalue
516: . res - result of comparison
517: - ctx - optional context, as set by NEPSetEigenvalueComparison()
519: Note:
520: The returning parameter 'res' can be
521: + negative - if the 1st eigenvalue is preferred to the 2st one
522: . zero - if both eigenvalues are equally preferred
523: - positive - if the 2st eigenvalue is preferred to the 1st one
525: Level: advanced
527: .seealso: NEPSetWhichEigenpairs(), NEPWhich528: @*/
529: PetscErrorCode NEPSetEigenvalueComparison(NEP nep,PetscErrorCode (*func)(PetscScalar,PetscScalar,PetscScalar,PetscScalar,PetscInt*,void*),void* ctx)530: {
533: nep->sc->comparison = func;
534: nep->sc->comparisonctx = ctx;
535: nep->which = NEP_WHICH_USER;
536: return(0);
537: }
539: /*@
540: NEPSetProblemType - Specifies the type of the nonlinear eigenvalue problem.
542: Logically Collective on nep
544: Input Parameters:
545: + nep - the nonlinear eigensolver context
546: - type - a known type of nonlinear eigenvalue problem
548: Options Database Keys:
549: + -nep_general - general problem with no particular structure
550: - -nep_rational - a rational eigenvalue problem defined in split form with all f_i rational
552: Notes:
553: Allowed values for the problem type are: general (NEP_GENERAL), and rational
554: (NEP_RATIONAL).
556: This function is used to provide a hint to the NEP solver to exploit certain
557: properties of the nonlinear eigenproblem. This hint may be used or not,
558: depending on the solver. By default, no particular structure is assumed.
560: Level: intermediate
562: .seealso: NEPSetType(), NEPGetProblemType(), NEPProblemType563: @*/
564: PetscErrorCode NEPSetProblemType(NEP nep,NEPProblemType type)565: {
569: if (type!=NEP_GENERAL && type!=NEP_RATIONAL) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
570: if (type != nep->problem_type) {
571: nep->problem_type = type;
572: nep->state = NEP_STATE_INITIAL;
573: }
574: return(0);
575: }
577: /*@
578: NEPGetProblemType - Gets the problem type from the NEP object.
580: Not Collective
582: Input Parameter:
583: . nep - the nonlinear eigensolver context
585: Output Parameter:
586: . type - the problem type
588: Level: intermediate
590: .seealso: NEPSetProblemType(), NEPProblemType591: @*/
592: PetscErrorCode NEPGetProblemType(NEP nep,NEPProblemType *type)593: {
597: *type = nep->problem_type;
598: return(0);
599: }
601: /*@
602: NEPSetTwoSided - Sets the solver to use a two-sided variant so that left
603: eigenvectors are also computed.
605: Logically Collective on nep
607: Input Parameters:
608: + nep - the eigensolver context
609: - twosided - whether the two-sided variant is to be used or not
611: Options Database Keys:
612: . -nep_two_sided <boolean> - Sets/resets the twosided flag
614: Notes:
615: If the user sets twosided=PETSC_TRUE then the solver uses a variant of
616: the algorithm that computes both right and left eigenvectors. This is
617: usually much more costly. This option is not available in all solvers.
619: When using two-sided solvers, the problem matrices must have both the
620: MatMult and MatMultTranspose operations defined.
622: Level: advanced
624: .seealso: NEPGetTwoSided(), NEPGetLeftEigenvector()
625: @*/
626: PetscErrorCode NEPSetTwoSided(NEP nep,PetscBool twosided)627: {
631: if (twosided!=nep->twosided) {
632: nep->twosided = twosided;
633: nep->state = NEP_STATE_INITIAL;
634: }
635: return(0);
636: }
638: /*@
639: NEPGetTwoSided - Returns the flag indicating whether a two-sided variant
640: of the algorithm is being used or not.
642: Not Collective
644: Input Parameter:
645: . nep - the eigensolver context
647: Output Parameter:
648: . twosided - the returned flag
650: Level: advanced
652: .seealso: NEPSetTwoSided()
653: @*/
654: PetscErrorCode NEPGetTwoSided(NEP nep,PetscBool *twosided)655: {
659: *twosided = nep->twosided;
660: return(0);
661: }
663: /*@C
664: NEPSetConvergenceTestFunction - Sets a function to compute the error estimate
665: used in the convergence test.
667: Logically Collective on nep
669: Input Parameters:
670: + nep - nonlinear eigensolver context obtained from NEPCreate()
671: . func - a pointer to the convergence test function
672: . ctx - context for private data for the convergence routine (may be null)
673: - destroy - a routine for destroying the context (may be null)
675: Calling Sequence of func:
676: $ func(NEP nep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
678: + nep - nonlinear eigensolver context obtained from NEPCreate()
679: . eigr - real part of the eigenvalue
680: . eigi - imaginary part of the eigenvalue
681: . res - residual norm associated to the eigenpair
682: . errest - (output) computed error estimate
683: - ctx - optional context, as set by NEPSetConvergenceTestFunction()
685: Note:
686: If the error estimate returned by the convergence test function is less than
687: the tolerance, then the eigenvalue is accepted as converged.
689: Level: advanced
691: .seealso: NEPSetConvergenceTest(), NEPSetTolerances()
692: @*/
693: PetscErrorCode NEPSetConvergenceTestFunction(NEP nep,PetscErrorCode (*func)(NEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*),void* ctx,PetscErrorCode (*destroy)(void*))694: {
699: if (nep->convergeddestroy) {
700: (*nep->convergeddestroy)(nep->convergedctx);
701: }
702: nep->convergeduser = func;
703: nep->convergeddestroy = destroy;
704: nep->convergedctx = ctx;
705: if (func == NEPConvergedRelative) nep->conv = NEP_CONV_REL;
706: else if (func == NEPConvergedNorm) nep->conv = NEP_CONV_NORM;
707: else if (func == NEPConvergedAbsolute) nep->conv = NEP_CONV_ABS;
708: else {
709: nep->conv = NEP_CONV_USER;
710: nep->converged = nep->convergeduser;
711: }
712: return(0);
713: }
715: /*@
716: NEPSetConvergenceTest - Specifies how to compute the error estimate
717: used in the convergence test.
719: Logically Collective on nep
721: Input Parameters:
722: + nep - nonlinear eigensolver context obtained from NEPCreate()
723: - conv - the type of convergence test
725: Options Database Keys:
726: + -nep_conv_abs - Sets the absolute convergence test
727: . -nep_conv_rel - Sets the convergence test relative to the eigenvalue
728: - -nep_conv_user - Selects the user-defined convergence test
730: Note:
731: The parameter 'conv' can have one of these values
732: + NEP_CONV_ABS - absolute error ||r||
733: . NEP_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
734: . NEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(|f_i(l)|*||A_i||)
735: - NEP_CONV_USER - function set by NEPSetConvergenceTestFunction()
737: Level: intermediate
739: .seealso: NEPGetConvergenceTest(), NEPSetConvergenceTestFunction(), NEPSetStoppingTest(), NEPConv740: @*/
741: PetscErrorCode NEPSetConvergenceTest(NEP nep,NEPConv conv)742: {
746: switch (conv) {
747: case NEP_CONV_ABS: nep->converged = NEPConvergedAbsolute; break;
748: case NEP_CONV_REL: nep->converged = NEPConvergedRelative; break;
749: case NEP_CONV_NORM: nep->converged = NEPConvergedNorm; break;
750: case NEP_CONV_USER:
751: if (!nep->convergeduser) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetConvergenceTestFunction() first");
752: nep->converged = nep->convergeduser;
753: break;
754: default:755: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
756: }
757: nep->conv = conv;
758: return(0);
759: }
761: /*@
762: NEPGetConvergenceTest - Gets the method used to compute the error estimate
763: used in the convergence test.
765: Not Collective
767: Input Parameters:
768: . nep - nonlinear eigensolver context obtained from NEPCreate()
770: Output Parameters:
771: . conv - the type of convergence test
773: Level: intermediate
775: .seealso: NEPSetConvergenceTest(), NEPConv776: @*/
777: PetscErrorCode NEPGetConvergenceTest(NEP nep,NEPConv *conv)778: {
782: *conv = nep->conv;
783: return(0);
784: }
786: /*@C
787: NEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
788: iteration of the eigensolver.
790: Logically Collective on nep
792: Input Parameters:
793: + nep - nonlinear eigensolver context obtained from NEPCreate()
794: . func - pointer to the stopping test function
795: . ctx - context for private data for the stopping routine (may be null)
796: - destroy - a routine for destroying the context (may be null)
798: Calling Sequence of func:
799: $ func(NEP nep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,NEPConvergedReason *reason,void *ctx)
801: + nep - nonlinear eigensolver context obtained from NEPCreate()
802: . its - current number of iterations
803: . max_it - maximum number of iterations
804: . nconv - number of currently converged eigenpairs
805: . nev - number of requested eigenpairs
806: . reason - (output) result of the stopping test
807: - ctx - optional context, as set by NEPSetStoppingTestFunction()
809: Note:
810: Normal usage is to first call the default routine NEPStoppingBasic() and then
811: set reason to NEP_CONVERGED_USER if some user-defined conditions have been
812: met. To let the eigensolver continue iterating, the result must be left as
813: NEP_CONVERGED_ITERATING.
815: Level: advanced
817: .seealso: NEPSetStoppingTest(), NEPStoppingBasic()
818: @*/
819: PetscErrorCode NEPSetStoppingTestFunction(NEP nep,PetscErrorCode (*func)(NEP,PetscInt,PetscInt,PetscInt,PetscInt,NEPConvergedReason*,void*),void* ctx,PetscErrorCode (*destroy)(void*))820: {
825: if (nep->stoppingdestroy) {
826: (*nep->stoppingdestroy)(nep->stoppingctx);
827: }
828: nep->stoppinguser = func;
829: nep->stoppingdestroy = destroy;
830: nep->stoppingctx = ctx;
831: if (func == NEPStoppingBasic) nep->stop = NEP_STOP_BASIC;
832: else {
833: nep->stop = NEP_STOP_USER;
834: nep->stopping = nep->stoppinguser;
835: }
836: return(0);
837: }
839: /*@
840: NEPSetStoppingTest - Specifies how to decide the termination of the outer
841: loop of the eigensolver.
843: Logically Collective on nep
845: Input Parameters:
846: + nep - nonlinear eigensolver context obtained from NEPCreate()
847: - stop - the type of stopping test
849: Options Database Keys:
850: + -nep_stop_basic - Sets the default stopping test
851: - -nep_stop_user - Selects the user-defined stopping test
853: Note:
854: The parameter 'stop' can have one of these values
855: + NEP_STOP_BASIC - default stopping test
856: - NEP_STOP_USER - function set by NEPSetStoppingTestFunction()
858: Level: advanced
860: .seealso: NEPGetStoppingTest(), NEPSetStoppingTestFunction(), NEPSetConvergenceTest(), NEPStop861: @*/
862: PetscErrorCode NEPSetStoppingTest(NEP nep,NEPStop stop)863: {
867: switch (stop) {
868: case NEP_STOP_BASIC: nep->stopping = NEPStoppingBasic; break;
869: case NEP_STOP_USER:
870: if (!nep->stoppinguser) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ORDER,"Must call NEPSetStoppingTestFunction() first");
871: nep->stopping = nep->stoppinguser;
872: break;
873: default:874: SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
875: }
876: nep->stop = stop;
877: return(0);
878: }
880: /*@
881: NEPGetStoppingTest - Gets the method used to decide the termination of the outer
882: loop of the eigensolver.
884: Not Collective
886: Input Parameters:
887: . nep - nonlinear eigensolver context obtained from NEPCreate()
889: Output Parameters:
890: . stop - the type of stopping test
892: Level: advanced
894: .seealso: NEPSetStoppingTest(), NEPStop895: @*/
896: PetscErrorCode NEPGetStoppingTest(NEP nep,NEPStop *stop)897: {
901: *stop = nep->stop;
902: return(0);
903: }
905: /*@
906: NEPSetTrackAll - Specifies if the solver must compute the residual of all
907: approximate eigenpairs or not.
909: Logically Collective on nep
911: Input Parameters:
912: + nep - the eigensolver context
913: - trackall - whether compute all residuals or not
915: Notes:
916: If the user sets trackall=PETSC_TRUE then the solver explicitly computes
917: the residual for each eigenpair approximation. Computing the residual is
918: usually an expensive operation and solvers commonly compute the associated
919: residual to the first unconverged eigenpair.
921: The option '-nep_monitor_all' automatically activates this option.
923: Level: developer
925: .seealso: NEPGetTrackAll()
926: @*/
927: PetscErrorCode NEPSetTrackAll(NEP nep,PetscBool trackall)928: {
932: nep->trackall = trackall;
933: return(0);
934: }
936: /*@
937: NEPGetTrackAll - Returns the flag indicating whether all residual norms must
938: be computed or not.
940: Not Collective
942: Input Parameter:
943: . nep - the eigensolver context
945: Output Parameter:
946: . trackall - the returned flag
948: Level: developer
950: .seealso: NEPSetTrackAll()
951: @*/
952: PetscErrorCode NEPGetTrackAll(NEP nep,PetscBool *trackall)953: {
957: *trackall = nep->trackall;
958: return(0);
959: }
961: /*@
962: NEPSetRefine - Specifies the refinement type (and options) to be used
963: after the solve.
965: Logically Collective on nep
967: Input Parameters:
968: + nep - the nonlinear eigensolver context
969: . refine - refinement type
970: . npart - number of partitions of the communicator
971: . tol - the convergence tolerance
972: . its - maximum number of refinement iterations
973: - scheme - which scheme to be used for solving the involved linear systems
975: Options Database Keys:
976: + -nep_refine <type> - refinement type, one of <none,simple,multiple>
977: . -nep_refine_partitions <n> - the number of partitions
978: . -nep_refine_tol <tol> - the tolerance
979: . -nep_refine_its <its> - number of iterations
980: - -nep_refine_scheme - to set the scheme for the linear solves
982: Notes:
983: By default, iterative refinement is disabled, since it may be very
984: costly. There are two possible refinement strategies: simple and multiple.
985: The simple approach performs iterative refinement on each of the
986: converged eigenpairs individually, whereas the multiple strategy works
987: with the invariant pair as a whole, refining all eigenpairs simultaneously.
988: The latter may be required for the case of multiple eigenvalues.
990: In some cases, especially when using direct solvers within the
991: iterative refinement method, it may be helpful for improved scalability
992: to split the communicator in several partitions. The npart parameter
993: indicates how many partitions to use (defaults to 1).
995: The tol and its parameters specify the stopping criterion. In the simple
996: method, refinement continues until the residual of each eigenpair is
997: below the tolerance (tol defaults to the NEP tol, but may be set to a
998: different value). In contrast, the multiple method simply performs its
999: refinement iterations (just one by default).
1001: The scheme argument is used to change the way in which linear systems are
1002: solved. Possible choices are: explicit, mixed block elimination (MBE),
1003: and Schur complement.
1005: Level: intermediate
1007: .seealso: NEPGetRefine()
1008: @*/
1009: PetscErrorCode NEPSetRefine(NEP nep,NEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,NEPRefineScheme scheme)1010: {
1012: PetscMPIInt size;
1021: nep->refine = refine;
1022: if (refine) { /* process parameters only if not REFINE_NONE */
1023: if (npart!=nep->npart) {
1024: PetscSubcommDestroy(&nep->refinesubc);
1025: KSPDestroy(&nep->refineksp);
1026: }
1027: if (npart == PETSC_DEFAULT || npart == PETSC_DECIDE) {
1028: nep->npart = 1;
1029: } else {
1030: MPI_Comm_size(PetscObjectComm((PetscObject)nep),&size);CHKERRMPI(ierr);
1031: if (npart<1 || npart>size) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
1032: nep->npart = npart;
1033: }
1034: if (tol == PETSC_DEFAULT || tol == PETSC_DECIDE) {
1035: nep->rtol = PETSC_DEFAULT;
1036: } else {
1037: if (tol<=0.0) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
1038: nep->rtol = tol;
1039: }
1040: if (its==PETSC_DECIDE || its==PETSC_DEFAULT) {
1041: nep->rits = PETSC_DEFAULT;
1042: } else {
1043: if (its<0) SETERRQ(PetscObjectComm((PetscObject)nep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
1044: nep->rits = its;
1045: }
1046: nep->scheme = scheme;
1047: }
1048: nep->state = NEP_STATE_INITIAL;
1049: return(0);
1050: }
1052: /*@C
1053: NEPGetRefine - Gets the refinement strategy used by the NEP object, and the
1054: associated parameters.
1056: Not Collective
1058: Input Parameter:
1059: . nep - the nonlinear eigensolver context
1061: Output Parameters:
1062: + refine - refinement type
1063: . npart - number of partitions of the communicator
1064: . tol - the convergence tolerance
1065: - its - maximum number of refinement iterations
1066: - scheme - the scheme used for solving linear systems
1068: Level: intermediate
1070: Note:
1071: The user can specify NULL for any parameter that is not needed.
1073: .seealso: NEPSetRefine()
1074: @*/
1075: PetscErrorCode NEPGetRefine(NEP nep,NEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,NEPRefineScheme *scheme)1076: {
1079: if (refine) *refine = nep->refine;
1080: if (npart) *npart = nep->npart;
1081: if (tol) *tol = nep->rtol;
1082: if (its) *its = nep->rits;
1083: if (scheme) *scheme = nep->scheme;
1084: return(0);
1085: }
1087: /*@C
1088: NEPSetOptionsPrefix - Sets the prefix used for searching for all
1089: NEP options in the database.
1091: Logically Collective on nep
1093: Input Parameters:
1094: + nep - the nonlinear eigensolver context
1095: - prefix - the prefix string to prepend to all NEP option requests
1097: Notes:
1098: A hyphen (-) must NOT be given at the beginning of the prefix name.
1099: The first character of all runtime options is AUTOMATICALLY the
1100: hyphen.
1102: For example, to distinguish between the runtime options for two
1103: different NEP contexts, one could call
1104: .vb
1105: NEPSetOptionsPrefix(nep1,"neig1_")
1106: NEPSetOptionsPrefix(nep2,"neig2_")
1107: .ve
1109: Level: advanced
1111: .seealso: NEPAppendOptionsPrefix(), NEPGetOptionsPrefix()
1112: @*/
1113: PetscErrorCode NEPSetOptionsPrefix(NEP nep,const char *prefix)1114: {
1119: if (!nep->V) { NEPGetBV(nep,&nep->V); }
1120: BVSetOptionsPrefix(nep->V,prefix);
1121: if (!nep->ds) { NEPGetDS(nep,&nep->ds); }
1122: DSSetOptionsPrefix(nep->ds,prefix);
1123: if (!nep->rg) { NEPGetRG(nep,&nep->rg); }
1124: RGSetOptionsPrefix(nep->rg,prefix);
1125: PetscObjectSetOptionsPrefix((PetscObject)nep,prefix);
1126: return(0);
1127: }
1129: /*@C
1130: NEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1131: NEP options in the database.
1133: Logically Collective on nep
1135: Input Parameters:
1136: + nep - the nonlinear eigensolver context
1137: - prefix - the prefix string to prepend to all NEP option requests
1139: Notes:
1140: A hyphen (-) must NOT be given at the beginning of the prefix name.
1141: The first character of all runtime options is AUTOMATICALLY the hyphen.
1143: Level: advanced
1145: .seealso: NEPSetOptionsPrefix(), NEPGetOptionsPrefix()
1146: @*/
1147: PetscErrorCode NEPAppendOptionsPrefix(NEP nep,const char *prefix)1148: {
1153: if (!nep->V) { NEPGetBV(nep,&nep->V); }
1154: BVAppendOptionsPrefix(nep->V,prefix);
1155: if (!nep->ds) { NEPGetDS(nep,&nep->ds); }
1156: DSAppendOptionsPrefix(nep->ds,prefix);
1157: if (!nep->rg) { NEPGetRG(nep,&nep->rg); }
1158: RGAppendOptionsPrefix(nep->rg,prefix);
1159: PetscObjectAppendOptionsPrefix((PetscObject)nep,prefix);
1160: return(0);
1161: }
1163: /*@C
1164: NEPGetOptionsPrefix - Gets the prefix used for searching for all
1165: NEP options in the database.
1167: Not Collective
1169: Input Parameters:
1170: . nep - the nonlinear eigensolver context
1172: Output Parameters:
1173: . prefix - pointer to the prefix string used is returned
1175: Note:
1176: On the Fortran side, the user should pass in a string 'prefix' of
1177: sufficient length to hold the prefix.
1179: Level: advanced
1181: .seealso: NEPSetOptionsPrefix(), NEPAppendOptionsPrefix()
1182: @*/
1183: PetscErrorCode NEPGetOptionsPrefix(NEP nep,const char *prefix[])1184: {
1190: PetscObjectGetOptionsPrefix((PetscObject)nep,prefix);
1191: return(0);
1192: }